226 research outputs found

    MAT: A Multimodal Attentive Translator for Image Captioning

    Full text link
    In this work we formulate the problem of image captioning as a multimodal translation task. Analogous to machine translation, we present a sequence-to-sequence recurrent neural networks (RNN) model for image caption generation. Different from most existing work where the whole image is represented by convolutional neural network (CNN) feature, we propose to represent the input image as a sequence of detected objects which feeds as the source sequence of the RNN model. In this way, the sequential representation of an image can be naturally translated to a sequence of words, as the target sequence of the RNN model. To represent the image in a sequential way, we extract the objects features in the image and arrange them in a order using convolutional neural networks. To further leverage the visual information from the encoded objects, a sequential attention layer is introduced to selectively attend to the objects that are related to generate corresponding words in the sentences. Extensive experiments are conducted to validate the proposed approach on popular benchmark dataset, i.e., MS COCO, and the proposed model surpasses the state-of-the-art methods in all metrics following the dataset splits of previous work. The proposed approach is also evaluated by the evaluation server of MS COCO captioning challenge, and achieves very competitive results, e.g., a CIDEr of 1.029 (c5) and 1.064 (c40)

    Task Transfer by Preference-Based Cost Learning

    Full text link
    The goal of task transfer in reinforcement learning is migrating the action policy of an agent to the target task from the source task. Given their successes on robotic action planning, current methods mostly rely on two requirements: exactly-relevant expert demonstrations or the explicitly-coded cost function on target task, both of which, however, are inconvenient to obtain in practice. In this paper, we relax these two strong conditions by developing a novel task transfer framework where the expert preference is applied as a guidance. In particular, we alternate the following two steps: Firstly, letting experts apply pre-defined preference rules to select related expert demonstrates for the target task. Secondly, based on the selection result, we learn the target cost function and trajectory distribution simultaneously via enhanced Adversarial MaxEnt IRL and generate more trajectories by the learned target distribution for the next preference selection. The theoretical analysis on the distribution learning and convergence of the proposed algorithm are provided. Extensive simulations on several benchmarks have been conducted for further verifying the effectiveness of the proposed method.Comment: Accepted to AAAI 2019. Mingxuan Jing and Xiaojian Ma contributed equally to this wor

    RON: Reverse Connection with Objectness Prior Networks for Object Detection

    Full text link
    We present RON, an efficient and effective framework for generic object detection. Our motivation is to smartly associate the best of the region-based (e.g., Faster R-CNN) and region-free (e.g., SSD) methodologies. Under fully convolutional architecture, RON mainly focuses on two fundamental problems: (a) multi-scale object localization and (b) negative sample mining. To address (a), we design the reverse connection, which enables the network to detect objects on multi-levels of CNNs. To deal with (b), we propose the objectness prior to significantly reduce the searching space of objects. We optimize the reverse connection, objectness prior and object detector jointly by a multi-task loss function, thus RON can directly predict final detection results from all locations of various feature maps. Extensive experiments on the challenging PASCAL VOC 2007, PASCAL VOC 2012 and MS COCO benchmarks demonstrate the competitive performance of RON. Specifically, with VGG-16 and low resolution 384X384 input size, the network gets 81.3% mAP on PASCAL VOC 2007, 80.7% mAP on PASCAL VOC 2012 datasets. Its superiority increases when datasets become larger and more difficult, as demonstrated by the results on the MS COCO dataset. With 1.5G GPU memory at test phase, the speed of the network is 15 FPS, 3X faster than the Faster R-CNN counterpart.Comment: Project page will be available at https://github.com/taokong/RON, and formal paper will appear in CVPR 201

    FoveaBox: Beyond Anchor-based Object Detector

    Full text link
    We present FoveaBox, an accurate, flexible, and completely anchor-free framework for object detection. While almost all state-of-the-art object detectors utilize predefined anchors to enumerate possible locations, scales and aspect ratios for the search of the objects, their performance and generalization ability are also limited to the design of anchors. Instead, FoveaBox directly learns the object existing possibility and the bounding box coordinates without anchor reference. This is achieved by: (a) predicting category-sensitive semantic maps for the object existing possibility, and (b) producing category-agnostic bounding box for each position that potentially contains an object. The scales of target boxes are naturally associated with feature pyramid representations. In FoveaBox, an instance is assigned to adjacent feature levels to make the model more accurate.We demonstrate its effectiveness on standard benchmarks and report extensive experimental analysis. Without bells and whistles, FoveaBox achieves state-of-the-art single model performance on the standard COCO and Pascal VOC object detection benchmark. More importantly, FoveaBox avoids all computation and hyper-parameters related to anchor boxes, which are often sensitive to the final detection performance. We believe the simple and effective approach will serve as a solid baseline and help ease future research for object detection. The code has been made publicly available at https://github.com/taokong/FoveaBox .Comment: IEEE Transactions on Image Processing, code at: https://github.com/taokong/FoveaBo
    • …
    corecore